metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing-Xin Liu,^a Jian-Yong Yu^a and Duan-Jun Xu^b*

^aDepartment of Chemistry, Shanghai University, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang Uinversity, People's Republic of China

Correspondence e-mail: r5744011@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.005 Å R factor = 0.042 wR factor = 0.102 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N,N'$)-(thiodiacetato- $\kappa^3 O,S,O'$)cobalt(II) dihydrate

The title Co^{II} complex, $[Co(C_6H_6N_4S_2)(C_4H_4O_4S)(H_2O)]$ -2H₂O, assumes a distorted octahedral coordination geometry formed by a diaminobithiazole (DABT) ligand, a thiodiacetate dianion (TDA) and a water molecule. The TDA dianion chelates to the Co^{II} atom with a facial configuration. Within the chelating DABT ligand, the two thiazole rings are twisted with respect to each other [dihedral angle = 12.04 (9)°].

Received 25 August 2005 Accepted 7 September 2005 Online 14 September 2005

Comment

Transition metal complexes of diaminobithiazole (DABT) have shown potential application in some fields, such as the effective inhibitors of DNA synthesis of the tumor cells (Waring, 1981; Fisher *et al.*, 1985). As part of our ongoing investigation of metal complexes incorporating the DABT ligand (Liu *et al.*, 2001), the title Co^{II} compound, (I), was prepared and its X-ray crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. The Co^{II} complex assumes a distorted octahedral coordination geometry formed by a DABT ligand, a thiodiacetate dianion (TDA) and a coordinated water molecule. The tridentate TDA dianion chelates to the Co^{II} atom with a facial configuration. Both chelating five-membered rings display envelope conformations, which is consistent with that found in an Ni^{II} complex with a chelating TDA ligand (Pan et al., 2005). The DABT ligand chelates to the Co^{II} atom with an average Co-N bond distance of 2.110 (3) Å (Table 1), which is comparable to the value of 2.097 (3) Å found in a corresponding compound, $[Co(DABT)(ODA)(H_2O)]$ (ODA is oxydiacetate; Shen et al., 2004). The two thiazole rings of the DABT ligand are twisted with respect to each other around the C3-C4 bond, with a dihedral angle of $12.04 (9)^{\circ}$. This conformation is also found in [Cd(DABT)₂Cl₂] (Liu et al., 2003), but it differs

 ${\rm (\!C\!\!\!\!C\!\!}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.

from the planar configuration of DABT found in [Cu(DABT)Cl₂] (Liu et al., 2001).

A partially overlapping arrangement of parallel thiazole rings related by an inversion centre is observed (Fig. 2). The face-to-face separation between the mean planes of the S1thiazole and S1^{vi}-thiazole rings is 3.558 (18) Å [symmetry code (vi): -x, 1 - y, 1 - z], which is significantly shorter than the thickness of the aromatic ring (3.7 Å) and suggests the existence of π - π stacking. There is extensive hydrogen bonding in the crystal structure of (I) (Table 2).

Experimental

An aqueous solution (20 ml) containing DABT (0.20 g, 1 mmol) and CoCl₂·6H₂O (0.24 g, 1 mmol) was mixed with an aqueous solution (10 ml) of H₂TDA (0.15 g, 1 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 5 h. The solution was cooled to room temperature and then filtered. Single crystals of (I) were obtained from the filtrate after 3 d.

Crystal data

$[Co(C_6H_6N_4S_2)(C_4H_4O_4S)-$	$D_x = 1.798 \text{ Mg m}^{-3}$
$(H_2O)]\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 459.38$	Cell parameters from 6855
Monoclinic, $P2_1/c$	reflections
a = 10.6918 (11) Å	$\theta = 3.0-24.0^{\circ}$
b = 7.1329 (7) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 22.794 (2) Å	T = 295 (2) K
$\beta = 102.538 \ (2)^{\circ}$	Prism, pink
V = 1696.9 (3) Å ³	$0.30 \times 0.20 \times 0.15 \text{ mm}$
Z = 4	
Data collection	
Rigaku R-AXIS RAPID	3003 independent reflections
diffractometer	2513 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.031$

 $l = -27 \rightarrow 19$

Figure 2

A packing diagram for (I), showing $\pi - \pi$ stacking between the S1-thiazole and S1^{vi}-thiazole rings [symmetry code: (vi) -x, 1 - y, 1 - z]. H atoms have been omitted for clarity.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 1.2046 <i>P</i>]
$wR(F^2) = 0.102$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3003 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		
Selected	bond lengths	(Å).

Co-S3	2.5143 (10)	Co-O5	2.102 (2)
Co-O1	2.078 (2)	Co-N1	2.121 (3)
Co-O3	2.044 (2)	Co-N3	2.100 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O2W^{i}$	0.92	2.09	2.943 (4)	154
$N2-H2B\cdots O2^{ii}$	0.92	2.41	3.168 (4)	140
$N4-H4A\cdots O3$	0.89	2.23	3.003 (4)	144
$N4-H4B\cdotsO1W^{iii}$	0.85	2.15	2.950 (5)	156
$O5-H5A\cdots O4^{iv}$	0.83	1.85	2.656 (3)	165
$O5-H5B\cdots O2^{ii}$	0.86	1.90	2.727 (3)	162
$O1W-H1C\cdots O5$	0.88	2.15	2.879 (4)	141
$O1W-H1D\cdots O1^{ii}$	0.94	2.46	3.330 (4)	154
$O2W - H2C \cdot \cdot \cdot S1^v$	0.92	2.27	2.994 (3)	135
$O2W - H2D \cdots O3$	0.89	2.48	3.249 (4)	145
$O2W-H2D\cdots O4$	0.89	1.92	2.678 (4)	142

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z; (iii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}; (v) x, -y + \frac{3}{2}, z + \frac{1}{2}$

H atoms bonded to O and N atoms were located in a difference Fourier map and refined as riding on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O,N)$. H atoms bonded to C atoms were placed in calculated positions with C-H = 0.97 (methylene) or 0.93 Å (aromatic), and were included in the final cycles of refinement in a riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2001). Acta Cryst. C57, 354–355.

Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.

Pan, T.-T., Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. E61, m1576-m1578.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Shen, Y.-H., Liu, J.-G., Xu, D.-J. (2004). *Acta Cryst.* E60, m842–m844.

Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.